A Model-Based Fault Detection and Diagnosis Scheme for Distributed Parameter Systems: A Learning Systems Approach
نویسنده
چکیده
In this note, fault detection techniques based on finite dimensional results are extended and applied to a class of infinite dimensional dynamical systems. This special class of systems assumes linear plant dynamics having an abrupt additive perturbation as the fault. This fault is assumed to be linear in the (unknown) constant (and possibly functional) parameters. An observer-based model estimate is proposed which serves to monitor the system’s dynamics for unanticipated failures, and its well posedness is summarized. Using a Lyapunov synthesis approach extended and applied to infinite dimensional systems, a stable adaptive fault diagnosis (fault parameter learning) scheme is developed. The resulting parameter adaptation rule is able to “sense” the instance of the fault occurrence. In addition, it identifies the fault parameters using the additional assumption of persistence of excitation. Extension of the adaptive monitoring scheme to incipient faults (time varying faults) is summarized. Simulations studies are used to illustrate the applicability of the theoretical results. Mathematics Subject Classification. 93C20, 35B37, 93D21, 93D05. Received April 11, 2000. Revised April 2, 2001.
منابع مشابه
Design of nonlinear parity approach to fault detection and identification based on Takagi-Sugeno fuzzy model and unknown input observer in nonlinear systems
In this study, a novel fault detection scheme is developed for a class of nonlinear system in the presence of sensor noise. A nonlinear Takagi-Sugeno fuzzy model is implemented to create multiple models. While the T-S fuzzy model is used for only the nonlinear distribution matrix of the fault and measurement signals, a larger category of nonlinear systems is considered. Next, a mapping to decou...
متن کاملOn the development of a sliding mode observer-based fault diagnosis scheme for a wind turbine benchmark model
This paper addresses the design of an observer-based fault diagnosis scheme, which is applied to some of the sensors and actuators of a wind turbine benchmark model. The methodology is based on a modified sliding mode observer (SMO) that allows accurate reconstruction of multiple sensor or actuator faults occurring simultaneously. The faults are reconstructed using the equivalent output err...
متن کاملOn the development of a sliding mode observer-based fault diagnosis scheme for a wind turbine benchmark model
This paper addresses the design of an observer-based fault diagnosis scheme, which is applied to some of the sensors and actuators of a wind turbine benchmark model. The methodology is based on a modified sliding mode observer (SMO) that allows accurate reconstruction of multiple sensor or actuator faults occurring simultaneously. The faults are reconstructed using the equivalent output err...
متن کاملFUZZY BASED FAULT DETECTION AND CONTROL FOR 6/4 SWITCHED RELUCTANCE MOTOR
Prompt detection and diagnosis of faults in industrial systems areessential to minimize the production losses, increase the safety of the operatorand the equipment. Several techniques are available in the literature to achievethese objectives. This paper presents fuzzy based control and fault detection for a6/4 switched reluctance motor. The fuzzy logic control performs like a classicalproporti...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کامل